UNCLASSIFIED

AD 401 280

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

P/006/62/010/003/006/006 D237/D308

NUTHOR:

Wmuk, Milosz

TITLE:

The limit state of a bar of any profile, subject to combined torsion and tension

LLPERIODICAL:

Rozprawy inzynierskie, v. 10: 3, 1962 365-579

The problem of combined stress in the purely plast:

TEXT: The problem of combined stress in the purely plastic state resulting from the simultaneous action of a torque Mg and a longitudinal force N is solved in displacements. Sought are the stress distribution, expressions for external forces and equations of the limiting curve in the (Mg, N) plane for any shape of the profile. Assuming the existence of a perfect elastic-plastic incompressible material, the author derives a nonlinear elliptic partial differential equation

 $3\nabla^2\psi + \lambda^2\Omega[\psi] = 0$

(2.18)

where V = nondimensional distortion function, Ω = nonlinear operator, λ = parameter defining the ratio of torsional and longi-

Card 1/2

P/006/62/010/003/006/006

The limit state

tudinal displacements. The expressions for tangential and normal stresses and a parametric equation of the limit curve are given for any profile. (2.18) is solved by Poincawe's method of small parameter. Taking the first approximation one obtains simple relations for the coefficient α characterizing the limit curve for $m_g \ll n$ (m_g , n = dimensionless torque and longitudinal force respectively). Hermitian interpolation extends the range of applicability to $0 \le m_g \le 1$, $0 \le n \le 1$ and results in the final equation

 $m_8^2 + \left(3 - \frac{1}{a}\right)n^2 + \left(\frac{1}{a} - 2\right)n^3 = 1$ (5.2)

valid for any profile. As an example, the equation of the limit curve is given for any polygonal profile, reducing to the known exact solution for the circular bar, when p = no. of sides $\rightarrow \infty$. There are 2 figures.

ASSOCIATION:

Politechnika Krakowska, Katedra Fizyki (Cracow Polytechnic, Department of Physics)

SUBMITTED:

January 10, 1962

Card 2/2

1